
Prevention of harmful behaviors within cognitive and
autonomous agents

Caroline Chopinaud1 and Amal El Fallah Seghrouchni2 and Patrick Taillibert3

Abstract. Being able to ensure that a multiagent system will not
generate undesirable behaviors is essential within the context of criti-
cal applications (embedded systems or real-time systems). The emer-
gence of behaviors from the agents interaction can generate situa-
tions incompatible with the expected system execution. The standard
methods to validate a multiagent system do not prevent the occur-
rence of undesirable behaviors during its execution in real condition.
We propose a complementary approach of dynamic self-monitoring
and self-regulation allowing the agents to control their own behav-
ior. This paper goes on to present the automatic generation of self-
controlled agents. We use the observer approach to verify that the
agents behavior respects a set of laws throughout the system execu-
tion.

1 Introduction

The behavior of a multiagent system (MAS) emerges from the
agents’ interaction. Some emergent behaviors can lead the system
to fail: these areundesirable behaviors. In our study, the autonomy
is an essential specificity of cognitive agents. We consider the auton-
omy as the capacity of an agent to take its decision alone, without
the help of another entity [1]. From the developer point of view, the
agent autonomy requires to take into account the unpredictability of
the agents’ behavior. This view increases the possibilities of occur-
rence of undesirable behaviors.

The potential occurrence of undesirable behaviors could be criti-
cal for the MAS execution, especially in the context of embedded or
real-time applications. To ensure the reliability of the multiagent sys-
tems, our work aims to provide a mechanism allowing the detection
and the prevention of the occurrence of these undesirable behaviors,
harmful to the system execution. A first approach could be the ap-
plication to multiagent systems of widely used validation methods
like: tests, model-checking and automatic demonstration. But, these
methods cannot find all the errors in a system: the model-checking
works on an abstraction of the system and its environment; the auto-
matic demonstration is complex and heavy; tests cannot be exhaus-
tive [3]. So, in order to detect the remaining errors, we propose to
verify the system at runtime. From this perspective, the recent work
of R. Paes & al. [12] proposes the use of laws to control the emer-
gence of wrong behaviors in the context of open MAS. Their ap-
proach consists in monitoring the interaction of the agents thanks to
an external entity and in describing the interaction protocols to detect
violation. Similarly, the work of Klein and Dellarocas [7] proposes
an approach of the exception handling thanks to a description of the

1 LIP6, France, email: caroline.chopinaud@lip6.fr
2 LIP6, France, email: amal.elfallah@lip6.fr
3 Thales Aerospace, France, email: patrick.taillibert@fr.thalesgroup.com

exceptions and external entities filtering the agents’ communication.
In the work of S. Hagg [6], sentinels are used to monitor the commu-
nication between the agents, build models of other agents and inter-
vene according to given guidelines.To our knowledge, works about
the surveillance of agents behaviors use external entities to monitor
the agents and detect inconsistences, particularly with respect to their
communications and interactions. Moreover, most of the verification
steps are done manually. The main advantage of our approach con-
sists in the automatic creation of agents which are able to verify their
behaviors from laws. This verification is based on the dynamic self-
monitoring and self-regulation of each agent in order to prevent the
system failure. We call this verification, theagent control.

The section 2 presents the agent control. The section 3 describes
the laws and their use to control the agents by themselves. The sec-
tion 4 details the whole process of the generation of a self-controlled
agent. The section 5 describes the working of our approach and the
section 6 introduces the multiagent case. Finally, the section 7 in-
troduces a prototype implementing our approach while the section 8
concludes our paper.

2 Control of autonomous agents

The agent control is divided in three stages :

• The monitoring of the behavior of an agent or a group of agents.
• The detection of undesirable behaviors that could emerge from the

execution of an agent or a group of agents.
• The regulation of the problematical agent(s).

2.1 Monitoring of an agent behavior

Monitoring the behavior of each agent in MAS in order to observe
relevant events, allows to detect or prevent the occurrence of unde-
sirable behaviors in the system [4]. Our work focuses on the obser-
vation of the MAS behavior at runtime. To observe the behavior of
an agent, it is necessary to insert event detectors in the agent pro-
gram. Although it is possible for a developer to insert manually the
probes into the agent program, this kind of instrumentation is hard,
time-consuming and prone to error [9]. We propose an automatic in-
strumentation of the programs of the agents,i.e. to insert a code of
control to detect some events from the specification ofhookspro-
vided by the developers. The main interest of this automation is to
simplify the work of the developer and to reduce the risk of errors
during the instrumentation.

2.2 Detection of undesirable behaviors

Making an exhaustive model of all the MAS behaviors is difficult and
costly because of its complexity (indeterminism, state explosion, dis-
tributed nature, interleaving between the autonomous agents behav-
iors). So we propose to abstract this model thanks to the definition of
properties about the agents’ behavior. These properties are expressed
using norms [13], usually defined as constraints on the agents’ be-
havior in order to guarantee a collective order. An autonomous agent
decides to respect or not a norm depending on the actions it chooses
to perform. We uselaws to describe desired or dreaded behaviors or
situations ; these laws represent significant or critical requirements
on the system execution and could be specified by the customer. At
the opposite of norms, laws are defined independently of the agents’
design and are not taken into account by the agents during the deci-
sion process. In other words, the agents can act autonomously while
our approach consists in verifying afterwards if the chosen action
respects the laws. Consequently the agents’ implementation and the
laws/control description are distinguished. The detection of undesir-
able behaviors can be viewed as the detection of laws transgression.

2.3 Self-regulation of agents behaviors

When an occurrence of (a potential) undesirable behavior is (to be)
detected, (i.e. when a law is transgressed), the agents concerned by
the law must regulate their behavior by themselves thanks to their ca-
pacity of reasoning. The developer provides the agents with a set of
strategies of regulation associated with the transgression of laws and,
at runtime, the agents deduce the behavior to follow when they are
informed of a law transgression. This behavior of regulation takes the
transgression into account but also the main behavior of the agent, its
current state, or even the other agents. Then, it seems quite complex
to define these strategies independently of the agents’ implementa-
tion, as for the laws. It is the reason why, to date, the strategies are
defined directly in the agent program.

3 The control description

In our approach, the description of the control applied to a multiagent
system comes down to the description of laws associated with the
agents.

3.1 Level of description

For a sake of generality, we would like to provide a mechanism of
control which is not specific to one agent model. Hence, the laws con-
cern abstract concepts representing the application and the model(s)
of agent(s) used. We propose an ontology composed of the following
concepts: AGENT, FEATURESand ACTION. The FEATURESconcept
has the sub-concept of Object, Message, Goal, Plan and Knowledge.
The ACTION concept has the sub-concepts of CreationAgent, Send-
ing Message, ReceiptMessage and Migration.

The designers of the system may freely extend this set of basic
concepts to refine and to enrich the description of the model(s) of the
agent(s) and the application. Moreover, in order to monitor the agent
behavior, we have introduced previously that the developers can de-
scribe hooks (cf 2.1). These hooks define the relation between the
concepts describing the agent model(s) and its (their) implementa-
tion (for more details see [2]).

3.2 A language of Law

To express the laws, we propose a language based on deontic oper-
ators, which are widely used in the context of norms. Our language
applies to events and states about the agents, corresponding to the
general basic concepts of FEATURES and ACTION, introduced in
the previous part. Anevent can be the execution of an action or the
change of a features value. Astate represents the resulting state of an
event. The expression of time or temporal relation between the events
and states is crucial in our framework and it is taken into account in
our language as we will see below. Our language distinguishes two
kinds of law: prohibition and obligation. A prohibition law represents
the unwanted states or events of an agent. It allows the detection of
situations where an event or a state which must never occur, is going
to happen. An obligation law represents the expected states or events
of an agent. It allows the detection of situations where an expected
event or state does not occur. In our approach a law is composed of
three parts:

• CONCERNED AGENT (CA): the statement of agents concerned by the
law, i.e. the agents subject to the law and agents used to describe the law
application context.

• DEONTIC ASSERTION (DA): the description of what is obligatory or
forbidden. It is a set of relationships between an agent and an event or a
state.

• APPLICATION CONDITIONS (APC): the description of the law con-
text. It is an expression describing when the DA must be respected rela-
tively to a set of events or states.

The description of our language is as follows:

LAW := (CA) (DA 〈APC〉).
CA := agent: AGENT 〈 andPROP〉
DA := DEON OP EXP
APC := TEMP OP EXP| TEMP OP EXP APC
DEON OP := FORBIDDEN| OBLIGED
TEMP OP := AFTER | BEFORE| IF
EXP := TERM| TERMAND EXP| TERMTHEN EXP
TERM := EVENT| NOT EVENT| EVENT TIME
EVENT := agentdoSMTH〈 andPROP〉 |

agentbeSMTH〈 andPROP〉
TIME := -second| +second

where SMTH represents a concept like ACTION or FEATURES;
AGENT represents the concept of agent; PROP is a common attribute
representing the properties on these concepts.

The laws are, actually, deontic formula expressed in dynamic de-
ontic logic[10]. Knowingly, the language limits the possibilities of
laws expressiveness to a sub-set of the dynamic deontic logic, allow-
ing the description of behaviors which can be monitored. For exam-
ple, a law can be expressed in this way:“(L1): It is forbidden for an
agent A1 to do an action ACT2 after an action ACT1 and before a
time Sec”and by using the language :

(L1): (A1 : Agent)
FORBIDDEN (A1 do ACT2) AFTER (A1 do ACT1) - Sec.

4 Self-controlled Agents

A main interest of our approach is the generation of agents being able
to control their own behaviors. A self-controlled agent is obtained
automatically from:

• the agent behavior program,
• the set of laws associated with the agent,
• the hooks between the concepts used in the laws and the agent

model implementation.

A generated agent has a specific architecture of control allowing
its monitoring and the detection of laws transgression thanks to the
observer mechanism [5].

4.1 The observer

The observer mechanism is used in the context of real-time systems
testing, on-line validation of parallel, or even distributed systems.
The observer consists in a parallel execution of a program and a
model of properties applied to the program execution. The model and
the program are connected with control points. A controller checks
on the model and the program execution are consistent. If the system
execution does not match the model, the verification fails.

We propose to put this approach in place into the agents in order to
provide them with the means to control their own behavior. A law is
modeled by means of a Petri net [11] whose transitions are bound to
the program with control points. The Petri nets representing each law
are automatically generated (c.f. 4.3). We insert into the agent behav-
ior program the control points and we generate a runnable agent with
a specific architecture, using the observer approach. When the pro-
gram execution meets a control point, the controller makes sure the
tokens are in the right place at the right time in the corresponding
net, and brings about some change in the model, accordingly.

4.2 The agent architecture

A target generated agent has a specific architecture divided into two
parts, thebehavior partand thecontrol part. The behavior part in-
cludes the real agent behavior and strategies of regulation defined by
the developer. Indeed, we would like not only that the verification
fails when an inconsistency is detected, but that the agent regulates
its behavior whenever a law is transgressed. The control part includes
the set of Petri nets representing the laws associated with the agent
and makes sure of the detection of the laws violation. The connec-
tions between the program and the models are effective thanks to a
sending of information from the behavior part to the control part. To
allow this sending of information, we instrument the behavior part
by inserting automatically some control points associated with the
events and states contained in the laws. The control part receives the
information and verifies the respect of the laws.

4.3 The generation

The generation of a self-controlled agent comes down to the genera-
tion of the Petri nets representing the laws concerning the agent and
the instrumentation of the agent behavior to detect the occurrence of
events and states expressed in the laws.

4.3.1 The instrumentation

We propose an automatic instrumentation of the agent behavior pro-
gram to monitor the occurrence of the events and states, defined in
the laws, by means ofcontrol points. This instrumentation is done
thanks to the hooks defined by the developer, between the concepts
describing the model and its implementation. In order to do that, we
draw our inspiration from the principle of weaving. Theweaving is
an important part of aspect programming [14]. The latter uses the
weaving to inject aspects in classes of an application, at the meth-
ods level, to modify the system execution after the compilation. An
aspect is a module representing crosscutting concerns. The interest
of aspect programming to integrate the monitoring in an application

was demonstrated in another light by [8]. So, our approach could be
summarize as follows:

1. Extracting the events or states to be detected.
2. For each event or state, searching for the hook that has been pro-

vided by the developer.
3. Injecting, before or after that hook, the piece of code allowing to

send the information to the control part and to recover of possible
information of transgression. The lattest enables the agent to start
a strategy of regulation.

4.3.2 The generation of Petri nets

The generation of a Petri net representing a law is divided into three
stages:

1. The translation of the law in a logic expressionL, in order to point
out a set of atomic expressions,{e1, ..., en}.

2. Incrementally:

(a) The deduction of a set of Petri nets,{p1, ..., pn} representative
of each expression in{e1, ..., en}.

(b) The merging of all the nets in{p1, ..., pn} from the relations
betweene1, ..., en to obtain a final Petri net,P , representing
the law.

To perform the step(1), each operator in the language has a mean-
ing in dynamic deontic logic. We use a set of translation rules to
obtain the logic expression representing the law (cf. Set of Rules 1).
For the step(2), we propose to represent atomic expression by means
of a Petri net, as in the set of rules 2; and merging rules, as described
in the set of rules 3. To express a prohibition we use aninhibitor arc
and to express a time, we use atemporal Petri net. The final Petri
netP representing the law, is embedded into the control part of each
agent submitted to the law.

Set of Rules 1
LetAct be a set of actions.
LetAssert be a set of assertions.
LetState be a set of states included in Assert.
∀α ∈ Act, φ ∈ Assert, β ∈ State.
(1) FORBIDDEN α ≡ Fα
(2) OBLIGED α ≡ Oα
(3) φ AFTER α ≡ [α]φ
(4) FORBIDDENα1 BEFORE α2 ≡ done(α2) ∨ Fα1
(5) OBLIGEDα1 BEFORE α2 ≡ ¬done(α) ∨Oα1
(6) α1 AND α2 ≡ (α1; α2) ∪ (α2; α1)
(7) α1 THEN α2 ≡ α1; α2
(8) φ IF β ≡ β ⊃ φ
(9) FORBIDDENα − Sec ≡ done(time(Sec)) ∨ Fα
(10)OBLIGEDα − Sec ≡ ¬done(time(Sec)) ∨Oα
(11)φ + Sec ≡ [time(Sec)]φ

Set of Rules 2
LetPN =< P, T, Pre, Post > be a Petri net, where:
P: a set of places,P = (p1, p2, ..., pn),
T: a set of transitions,T = (t1, t2, ..., tn),
Pre: a function,P × T → N , which defines directed arcs from places
to transitions. (Note Pre*, when the directed arc is an inhibitor arc)
Post: a function,P × T → N , which defines directed arcs from transitions
to places
Let tα be the transition associated with the actionα.
In the following, the ruleX ⇒ Y means thatX is a logical assertion
andY the corresponding Petri net.
∀α ∈ Act, β ∈ State
(1) Fα⇒< (pi, pj), tα, P re∗(pi, tα), Post(pj , tα) >
(2) Oα⇒< (pi, pj), tα, P re(pi, tα), Post(pj , tα) >
(3) doneα⇒< (pi, pj), tα, P re(pi, tα), Post(pj , tα) >

(4) ¬doneα⇒< pi, pj , tα, P re∗(pi, tα), Post(pj , tα) >
(5) β ⇒< (pi, β, pj), ti, tj , (Pre(pi, ti), P re(β, tj)),

(Post(β, ti), Post(pj , t)) >
(6) α⇒< (pi, pj), tα, P re(pi, tα), Post(pj , tα) >

Set of Rules 3
Let tα be the transition associated with the eventα.
Let tφ be the transition associated with the event used inφ.
Let Pre(p,t) be the function which returns the input placep
of a transitiont.
Let Post(p,t) be the function which returns the output placep
of a transitiont.
Letmergep(p1, p2) be the operator of fusion of two placesp1 andp2.
∀α ∈ Act, φ ∈ Assert, β ∈ State
(1) [α]φ⇒ mergep(Post(p, tα), P re(p, tφ)).
(2) φ1 ∨ φ2 ⇒ mergep(Pre(p, tφ2

), P re(p, tφ1
))

(3) φ1 ∧ φ2 ⇒ separation in two Petri nets : PNφ1
and PNφ2

(4) β ⊃ φ⇒ mergep(Pre(p, tφ), β)

5 The detection of transgression

We remind that the behavior part sends information about its states
and events to the control part. From this information, the control part
must verify if the laws associated with the agent are respected. To
detect the laws violation, the control part uses the two following al-
gorithms:

Algorithm 1 In the main part of the control part
1: LetI be an information about the agent behavior.
2: Let{t1, ..., tn} be the set of transitions associated withI.
3: Let{P1, ..., Pm} be the set of Petri nets associated with the agent.
4: Let{Pact1, ..., Pactp} be the set of activated Petri nets (i.e. associated

with the laws to be manage)
5: Let tij be the transitioni of the netj.
6: for all Pk ∈ {P1, ..., Pm} with t1k ∈ {t1, ..., tn} do
7: Pactp+1 ← create an instance ofPk

8: addPactp+1 in {Pact1, ..., Pactp}
9: end for

10: Let{Pact1, ..., Pactl} be the set of the activated Petri nets including a
tij ∈ {t1, ..., tn}, j ∈ {1, ..., l}

11: for all Pactj ∈ {Pact1, ..., Pactl} do
12: informPactj of the information associated withtij
13: end for

Algorithm 2 Within the instances of Petri net
1: Let{t1, tn} be the set of transitions of the Petri net.
2: LetI be the sent information.
3: Let tI be the transition associated with the information I∈ t1, ..., tn.
4: A transitionti is activatedif a token stands in all the previous places of

ti (in our Petri net the arcs are one-valuated).
5: if tI is activatedthen
6: if tI is firablethen
7: fire the transitiontI
8: else
9: throw exception

10: end if
11: end if

The control part receives the information and generates a new in-
stances of each Petri net beginning by the transition associated with
the information. The monitoring of the law,i.e. the associated Petri
net, isactivated. Then, the control part forwards the information to
all the instances where the information is expected. If the transition
associated with the information is activated , the instance verifies if
the transition is firable (according to the line 6, algo 2) and changes
the Petri net. When an inconsistency is detected, the instance throws
an exception and the control part warns the behavior part by sending

information of transgression. An instance is destroyed when the net
is in a final state, so when the law is respected or when the delay of
the law observation is elapsed.

When the behavior part sends an information to the control part, it
is stopped until the control part permits its restarting. The temporary
deadlock is essential if we want to prevent the execution of forbidden
actions.

6 About the multiagent behaviors

In the previous parts, we have presented the whole functioning of
the self-controlled agents. Particularly, we tackle a single agent view,
that is when a law affects only one agent. Even if this first part solves
a set of problems related to individual agent behavior, we think that
shifting to the multiagent behaviors rises other problems. Indeed, the
question is the control of the multiagent system behavior when sev-
eral agents, individually correct, are put together. A first step to an-
swer this question is the handling of the control when a law is applied
to several agents.

Our aim is to distribute as much as possible the control into each
agent involved in the law. We would like to avoid a centralized solu-
tion. We emphasize three points to put forward in that case:

• How is the distribution of the Petri net done among all the agents
concerned by the law?

• How do the control parts of the agents collaborate to detect a law
transgression?

• How is the regulation done? Who is the culprit?

6.1 The net distribution

The Petri net representing a law applied to several agents is deduced
as in a single agent context. Then, the net is distributed into the con-
trol parts of the agents concerned by the law. This distribution is done
by following the algorithm 3.

Algorithm 3 Petri net Distribution
1: LetL be a law.
2: LetP be the Petri net representingL.
3: LetNbagent be the number of agents concerned byL.
4: Let{Tm1, ..., Tmn} be the set of transitions where the information asso-

ciated withtmi comes from the agentAGm, m ∈ {1, ..., Nbagent}.
5: LetPpremt be the input place of the transitiont of the agentAGm.
6: LetPpostmt be the output place of the transitiont of the agentAGm.
7: for all T ∈ {Tm1, ..., Tmn} do
8: putT in the control part of the agentAGm.
9: end for

10: if Ppostmt ≡ Ppre(m+1)t′ then
11: putPpostmt in the control part of the agentAG(m+1).
12: end if
13: if Ppre(m+1)t′ ≡ Ppremt then
14: putPpremt in the control part of the agentAGm.
15: end if
16: for all t′ ∈ {1, ..., n},m′ ∈ {1, ..., Nbagent} do
17: if Ppostmt 6≡ Pprem′t′ then
18: putPpostmt in the control part of the agentAGm.
19: end if
20: if Ppremt 6≡ Ppostm′t′ then
21: putPpremt in the control part of the agentAGm.
22: end if
23: end for

Let us note that the control parts are only linked through the arcs
between places and transitions (themselves distributed over the con-
trol parts of agents). These links represent the information flow be-
tween the control parts (i.e the flow of the token).

6.2 The collaboration

A control part is willing to listen to the behavior part of its agent
and to the control part of the other agents. Indeed, when a law is
distributed into several agents, the control parts of these agents are
able to exchange information about the occurrence of events and
states. We have seen that the net distribution between the control
parts is in such a way that only branchesTransition → Place

or Place → Transition link every pieces of the net. These arcs
represent the flow of an information between the agents. In order to
explain the collaboration between the control parts, we propose to
use an example.

So, when a control part,CA, receives an information from its
agent, if this information is associated with a transitionT whose the
next place is in the control part of another agent,CB , thenCA sends
information about the firing of this transition, (actually, it sends the
token) to the control partCB and waits for an acknowledgment of
receipt. During this waiting, the execution of the agent is temporarily
stopped and the information associated withT is considered as al-
ways available. The control partCB receives the information, sends
the acknowledgment to the control partCA and executes the algo-
rithm 1, as if the information comes to its associated behavior part.
WhenCA receives the acknowledgment, the transition can be really
fired, the information associated withT is consumed and the agent
behavior can continue.

6.3 The regulation

The detection of a law transgression generates an exception in the
control part. This exception generates the transmission of informa-
tion of transgression from the control part to the behavior part of the
agent. In the context of a law applied to several agents, the mecha-
nism remains the same. All the control parts detecting a transgres-
sion, send the exception to the associated behavior part. So, we sup-
pose that the strategies of regulation solve the problem of who is the
culprit. Putting such strategy in place in the agents is not trivial and
will be treated in our future work.

7 Implementation

Our approach is implemented in a framework: SCAAR. This frame-
work provides the means to describe laws, concepts... and to generate
self-controlled agents. A prototype of SCAAR has been implemented
in SICStus Prolog. This first version provides a part of the language,
to describe single agent laws and the generation, from the laws de-
scription, of the Petri nets. The net distribution into several agents is
in progress. The behavior of the control part has been implemented
using the algorithms described in the section 5. The generated self-
controlled agents are made up of two Prolog processes, one execut-
ing the real agent behavior, one executing the control part behavior.
These two parts communicate by TCP/IP channel for the messages
passing about the occurrence of events in the agent behavior and the
detection of laws transgression.

Our approach has been applied to a multiagent application of mo-
bile naval targets localization, developed in our service:Interloc. In
Interloc, planes seek to detect boats, in a passive way. The system
is implemented in Prolog. In order to demonstrate the robustness of
MAS application, Interloc provides a set of wrong agent behaviors,
like:

• Dumb: The agent sends no message.
• Deaf: The agent reads no message.

• Selfish: The agent always refuses the requested services.
• Absurd: The agent accepts the services but sends absurd results.
• Latecomer: The agent is always late replying.

Therefore, Interloc is an interesting testbed to validate our ap-
proach. We have expressed laws to detect wrong behaviors and the
application has been executed with modified agents in order to de-
tect these “undesirable behaviors”, by using the generator provided
by SCAAR.

8 Conclusion

We have presented the principles of the autonomous agent control.
Particularly, we have described the mechanisms and the architecture
of the self-controlled agents, agents able to monitor their own behav-
iors. This monitoring is done from the specification of the laws that
the agents must respect during their execution. A distributed solution
to control multiagent behaviors has been proposed. An advantage
of our approach is the possibility to define laws at a high level, al-
lowing its application to several models of agents. Another point is
the automatic generation of the agents and the simplification of the
developer’s work to take the control into account. The framework
SCAAR, allowing the generation of self-controlled agents has been
introduced. Our future work is essentially to enhance the implemen-
tation and treat more carefully the regulation part.

REFERENCES
[1] K.S. Barber and C.E. Martin, ‘Agent autonomy : Specification, mea-

surement and dynamic adjustment’, inProc. of the Autonomy Control
Software workshop at Autonomous Agents’99, pp. 8–15, (May 1999).

[2] C. Chopinaud, A. El Fallah Seghrouchni, and P. Taillibert, ‘Dy-
namic self-control of autonomous agents’, inPost-Proceedings of PRO-
MAS’05, LNAI 3862, Spinger Verlag, (2006).

[3] E.M. Clarke, O. Grumberg, and D.A. Peled,Model Checking, MIT
Press, 2000.

[4] M. de Sousa Dias and D.J. Richardson, ‘Issues on softwaremonitoring’,
Technical report, Department of Information and Computer Science,
University of California, (July 2002).

[5] M. Diaz, G. Juanole, and J-P. Courtiat, ‘Observer-a concept for for-
mal on-line validation of distributed systems’,IEEE Trans. Softw. Eng.,
20(12), 900–913, (1994).

[6] Staffan Hagg, ‘A sentinel approach to fault handling in multi-agent
systems’, inRevised Papers from the Second Australian Workshop on
Distributed Artificial Intelligence: Multi-Agent Systems: Methodolo-
gies and Applications, volume 1286 ofLNCS, pp. 181–195. Spinger-
Verlag, (1996).

[7] Mark Klein and Chrysanthos Dellarocas, ‘Exception handling in agent
systems’, inIn proceedings of Agents’99, pp. 62–68, (1999).

[8] D. Mahrenholz, O. Spinczyk, and W. Schröder-Preikschat, ‘Program in-
strumentation for debugging and monitoring with AspectC++’,in Proc.
of the 5th IEEE International symposium on Object-OrientedReal-
time Distributed Computing, Washington DC, USA, (April 29 – May
1 2002).

[9] M. Mansouri-Samani,Monitoring of Distributed Sytems, Ph.D. disser-
tation, University of London, London, UK, 1995.

[10] JJCH. Meyer, ‘A different approach to deontic logic: deontic logic
viewed as a variant of dynamic logic’,Notre dame journal of formal
logic, 29(1), 109–136, (Winter 1988).

[11] T. Murata, ‘Petri nets: Properties, analysis and applications’,In Proc.
of IEEE, 77(4), 541–580, (April 1989).

[12] Rodrigo Paes, gustavo Carvalho, carlos Lucena, Paulo Alencar, Hyggo
Almeida, and Viviane Silva, ‘Specifying laws in open multi-agent sys-
tems’, inANIREM, Utrecht, (July 2005).

[13] J. Vázquez-Salceda, H. Aldewerld, and F. Dignum, ‘Implementing
norms in multiagent systems’, inProceedings of MATES’04, Erfurt,
Germany, (September, 29–30 2004).

[14] Dean Wampler. The future of aspect oriented programming, 2003.
White Paper, available onhttp://www.aspectprogramming.com.

