Prevention of harmful behaviorswithin cognitive and
autonomous agents

Caroline Chopinaud® and Amal El Fallah Seghrouchni? and Patrick Taillibert?

Abstract. Being able to ensure that a multiagent system will not exceptions and external entities filtering the agents’ communication.
generate undesirable behaviors is essential within the context of critin the work of S. Hagg [6], sentinels are used to monitor the commu-
cal applications (embedded systems or real-time systems). The emetication between the agents, build models of other agents and inter-
gence of behaviors from the agents interaction can generate situgene according to given guidelines.To our knowledge, works about
tions incompatible with the expected system execution. The standartthe surveillance of agents behaviors use external entities to monitor
methods to validate a multiagent system do not prevent the occuthe agents and detect inconsistences, particularly with respect to their
rence of undesirable behaviors during its execution in real conditioncommunications and interactions. Moreover, most of the verification
We propose a complementary approach of dynamic self-monitoringteps are done manually. The main advantage of our approach con-
and self-regulation allowing the agents to control their own behav-sists in the automatic creation of agents which are able to verify their
ior. This paper goes on to present the automatic generation of selbehaviors from laws. This verification is based on the dynamic self-
controlled agents. We use the observer approach to verify that theonitoring and self-regulation of each agent in order to prevent the
agents behavior respects a set of laws throughout the system exeaystem failure. We call this verification, tlagent control.
tion. The section 2 presents the agent control. The section 3 describes
the laws and their use to control the agents by themselves. The sec-
tion 4 details the whole process of the generation of a self-controlled
agent. The section 5 describes the working of our approach and the
The behavior of a multiagent system (MAS) emerges from thesection 6 introduces the multiagent case. Finally, the section 7 in-
agents’ interaction. Some emergent behaviors can lead the systelfipduces a prototype implementing our approach while the section 8
to fail: these areindesirable behaviors. In our study, the autonomy ~concludes our paper.
is an essential specificity of cognitive agents. We consider the auton-
omy as the capacity of an agent to take its decision alone, without
the help of another entity [1]. From the developer point of view, the2 Control of autonomous agents
agent autonomy requires to take into account the unpredictability of
the agents’ behavior. This view increases the possibilities of occu
rence of undesirable behaviors.

The potential occurrence of undesirable behaviors could be criti-
cal for the MAS execution, especially in the context of embedded ore The monitoring of the behavior of an agent or a group of agents.
real-time applications. To ensure the reliability of the multiagent sys-» The detection of undesirable behaviors that could emerge from the
tems, our work aims to provide a mechanism allowing the detection €xecution of an agent or a group of agents.
and the prevention of the occurrence of these undesirable behaviors, The regulation of the problematical agent(s).
harmful to the system execution. A first approach could be the ap-
plication to multiagent systems of widely used validation methods
like: tests, model-checking and automatic demonstration. But, thesg.1 Monitoring of an agent behavior
methods cannot find all the errors in a system: the model-checking
works on an abstraction of the system and its environment; the aut
matic demonstration is complex and heavy; tests cannot be exha

1 Introduction

"rhe agent control is divided in three stages :

cfK?Ionitoring the behavior of each agent in MAS in order to observe
tive 131, So. i der to detect th o tu?élevant events, allows to detect or prevent the occurrence of unde-
ive [3]. So, in order to detect the remaining errors, we propose Girable behaviors in the system [4]. Our work focuses on the obser-

verify the system at runtime. From this perspective, the recent Wor%/ation of the MAS behavior at runtime. To observe the behavior of
of R. Paes & al. [12] proposes the use of laws to control the €Meran agent, it is necessary to insert event detectors in the agent pro-

gence of wrong _behaw_ors_ in the _context_ of open MAS. Their ap- ram. Although it is possible for a developer to insert manually the
proach consists in monitoring the interaction of the agents thanks tﬁg

¢ lentity and in d ibina the int " tocols o det robes into the agent program, this kind of instrumentation is hard,
an externa’ entity and in describing the inferaction protaco’s 1o CeteGyy e _consuming and prone to error [9]. We propose an automatic in-

violation. Similarly, the wo_rk of Klel_n and Dellarocas [7] Proposes (i mantation of the programs of the agets,to insert a code of
an approach of the exception handling thanks to a description of thgOntrol to detect some events from the specificatiomaskspro-

1 | |P6, France, email: caroline.chopinaud@!lip6.fr vided by the developers. The main interest of this automation is to
2 LIP6, France, email: amal.elfallah@!ip6.fr simplify the work of the developer and to reduce the risk of errors
3 Thales Aerospace, France, email: patrick.taillibert@dtgsgroup.com during the instrumentation.

2.2 Detection of undesirable behaviors 3.2 A language of Law

Making an exhaustive model of all the MAS behaviors is difficult and 10 €xPress the laws, we propose a language based on deontic oper-
costly because of its complexity (indeterminism, state explosion, dis&t0rs: which are widely used in the context of norms. Our language
tributed nature, interleaving between the autonomous agents beha@PPlies to events and states about the agents, corresponding to the
iors). So we propose to abstract this model thanks to the definition g§€neral basic concepts ofERTURES and ACTION, introduced in
properties about the agents’ behavior. These properties are segres (e Previous part. Arvent can be the execution of an action or the
using norms [13], usually defined as constraints on the agents’ péhange ofafeature_s value..iaterepresents the_ resulting state of an
havior in order to guarantee a collective order. An autonomous agerfV€Nt: The expression of time or temporal relation between the events
decides to respect or not a norm depending on the actions it choos88d states is crucial in our framework and it is taken into account in
to perform. We uséaws to describe desired or dreaded behaviors orUr 1anguage as we will see below. Our language distinguishes two
situations ; these laws represent significant or critical requirement§nds of law: prohibition and obligation. A prohibition law represents
on the system execution and could be specified by the customer. Alee ur_lwanted states or events of an agent. It allows the dete_ctlon_ of
the opposite of norms, laws are defined independently of the agentSituations where an event or a state which must never occur, is going
design and are not taken into account by the agents during the dedf happen. An obligation law represents the expected states or events
sion process. In other words, the agents can act autonomously whiff @n agent. It allows the detection of situations where an expected
our approach consists in verifying afterwards if the chosen actiorfVent Or state does not occur. In our approach a law is composed of
respects the laws. Consequently the agents’ implementation and tfigree parts:

laws/control description are distinguished. The detection of undesire CONCERNED AGENT (CA): the statement of agents concerned by the

able behaviors can be viewed as the detection of laws transgression. 2%, i-€. the agents subject to the law and agents used toiliesce law
application context.
« DEONTIC ASSERTION (DA): the description of what is obligatory or
forbidden. It is a set of relationships between an agent anevant or a
state.

APPLICATION CONDITIONS (APC): the description of the law con-
text. It is an expression describing when the DA must be résdeela-
tively to a set of events or states.

2.3 Sdf-regulation of agentsbehaviors

When an occurrence of (a potential) undesirable behavior is (to be}
detected,i(e. when a law is transgressed), the agents concerned by
the law must regulate their behavior by themselves thanks to their ca-
pacity of reasoning. The developer provides the agents with a set of
strategies of regulation associated with the transgression of laws and,

The description of our language is as follows:

) _ LAW := (CA) (DA (APC)).
at runtime, the agents deduce the behavior to follow when they are CA := agent: AGENT { andPROP)
informed of a law transgression. This behavior of regulation takes the Réc = ?EE’\(AJ’F\)ng E;épﬂ TEMP.OP EXP APG
transgression into account but also the main bghawor of th_e agent,its pednop = FORB]DDEN| OBLIGED
current state, or even the other agents. Then, it seems quite complex TEMP.OP := AFTER| BEFORE| IF
to define these strategies independently of the agents’ implementa- EXP :=TERM| |TERMAND E>‘<P\ TERMTHEN EXP
; ; ; TERM := EVENT| NOT EVENT| EVENT TIME
tlon_, as fqr the Igws. It is the reason why, to date, the strategies are EVENT = agentdo SMTH{ andPROP) |
defined directly in the agent program. agentbe SMTH(andPROP)

TIME :=-second +second

3 Thecontrol description where SMTH represents a concept like€AON or FEATURES
AGENTrepresents the concept of agent; PROP is a common attribute
In our approach, the description of the control applied to a multiagen;epresenting the properties on these concepts.

SyStem comes down to the description of laws associated with the The laws are, actua”y, deontic formula expressed in dynamic de-
agents. ontic logic[10]. Knowingly, the language limits the possibilities of
laws expressiveness to a sub-set of the dynamic deontic logic, allow-
ing the description of behaviors which can be monitored. For exam-
ple, a law can be expressed in this w&y:1): It is forbidden for an

E ke of lit Id like t id hani fagent Al to do an action ACT2 after an action ACT1 and before a
or a sake of generality, we would like to provide a mechanism of, - ‘<04 by using the language :

control which is not specific to one agent model. Hence, the laws con-

3.1 Level of description

cern abstract concepts representing the application and the model
of agent(s) used. We propose an ontology composed of the following
concepts: A&ENT, FEATURESand ACTION. The FEATURESconcept

has the sub-concept of Object, Message, Goal, Plan and Knowledga.

@h): (Al: Agent)

FORBIDDEN (A1 do ACT2) AFTER (A1 do ACT1) - Sec.

Self-controlled Agents

The AcTION concept has the sub-concepts of Creattgent, Send-
ing_Message, Receigtflessage and Migration. A main interest of our approach is the generation of agents being able
The designers of the system may freely extend this set of basito control their own behaviors. A self-controlled agent is obtained

concepts to refine and to enrich the description of the model(s) of thautomatically from:

agent(s) and the application. Moreover, in order to monitor the agent

behavior, we have introduced previously that the developers can de- the agent behavior program,

scribe hooks (cf 2.1). These hooks define the relation between the the set of laws associated with the agent,

concepts describing the agent model(s) and its (their) implementas the hooks between the concepts used in the laws and the agent
tion (for more details see [2]). model implementation.

A generated agent has a specific architecture of control allowingvas demonstrated in another light by [8]. So, our approach could be
its monitoring and the detection of laws transgression thanks to theummarize as follows:
observer mechanism [5].
1. Extracting the events or states to be detected.

41 Theob 2. For each event or state, searching for the hook that has been pro-
: e observer vided by the developer.

The observer mechanism is used in the context of real-time systerds Injecting, before or after that hook, the piece of code allowing to
testing, on-line validation of parallel, or even distributed systems. send the information to the control part and to recover of possible
The observer consists in a para||e| execution of a program and a information of transgression. The lattest enables the agent to start
model of properties applied to the program execution. The model and & strategy of regulation.
the program are connected with control points. A controller checks
on the model and the program execution are _c_ons_istent_. Ifthe syste3 2 The generation of Petri nets
execution does not match the model, the verification fails.

We propose to put this approach in place into the agents in order tEhe generation of a Petri net representing a law is divided into three
provide them with the means to control their own behavior. A law isStages:
modeled by means of a Petri net [11] whose transitions are bound to)])))
the program with control points. The Petri nets representing each lajy The translation of the law in a logic expressibyin order to point
are automatically generated (c.f. 4.3). We insert into the agent behay- OUt @ set of atomic expressior(s, ..., en }.
ior program the control points and we generate a runnable agent with Incrementally:
a specific architecture, using the observer approach. When the pro{a) The deduction of a set of Petri nefgy, ..., p, } representative
gram execution meets a control point, the controller makes sure the of each expression ifei, ..., e, }.
tokens are in the right place at the right time in the corresponding

. . . Th i f all th i vy D} f he relati
net, and brings about some change in the model, accordingly. (b) The merging of all the nets ifp:, ..., pa } from the relations

betweeney, ..., e, to obtain a final Petri netP, representing
the law.
4.2 Theagent architecture

To perform the stefil), each operator in the language has a mean-
A target generated agent has a specific architecture divided into tw@g jn dynamic deontic logic. We use a set of translation rules to
parts, thebehavior partand thecontrol part The behavior part in- gptain the logic expression representing the law (cf. Set of Rules 1).
cludes the real agent behavior and strategies of regulation defined iy the stegf2), we propose to represent atomic expression by means
the developer. Indeed, we would like not only that the verificationgf 5 petri net, as in the set of rules 2; and merging rules, as described
fails when an inconsistency is detected, but that the agent regulatgs ihe set of rules 3. To express a prohibition we us@aibitor arc
its behavior whenever a law is transgressed. The control partincludeg,q 1o express a time, we usaemporal Petri netThe final Petri

the set of Petri nets representing the laws associated with the ageRét p representing the law, is embedded into the control part of each
and makes sure of the detection of the laws violation. The connecgent submitted to the law.
tions between the program and the models are effective thanks to a
sending of information from the behavior part to the control part. ToSet of Rules 1 _
allow this sending of information, we instrument the behavior part ~ LetAct be asetof actions.
by inserting automatically some control points associated with the Let Assert be a set of assertions.
y 9 . y 8 P A Let State be a set of states included in Assert.
events and states contained in the laws. The control part receives the va € Act, ¢ € Assert, 8 € State.

information and verifies the respect of the laws. (1) FORBIDDEN o = Fa
(2) OBLIGED a = Oa
(3) ¢ AFTERa = [a]¢
i (4) FORBIDDEN«a1 BEFORE ag = done(az) V Fay
4.3 Thegeneration (5) OBLIGEDa; BEFORE as = —~done(a) V Oay
The generation of a self-controlled agent comes down to the genera- (8) @1 AND az = (a1;a2) U (az;a1)

; : ;) 7) a1 THEN a3 = a;
tion of the Petri nets representing the laws concerning the agent and 283 SIFA=pog 0%

the instrumentation of the agent behavior to detect the occurrence of (9) FORBIDDENa — Sec = done(time(Sec)) V Fa

events and states expressed in the laws. (10)OBLIGEDo — Sec = —done(time(Sec)) V Oa
(11)¢ + Sec = [time(Sec)]d

4.3.1 The instrumentation Set of Rules 2

We propose an automatic instrumentation of the agent behavior pro- 'IftPNt :f<IP7 T, Pre, Post > be a Petri net, where:
gram to monitor the occurrence of the events and states, defined in T:':sS:t gf t?aics?fiopn&(’;l ’é’f’ t2p“1)
the laws, by means afontrol points. This instrumentation is done Pre: a function,P x T — N, which defines directed arcs from places
thanks to the hooks defined by the developer, between the concepts to transitions. (Note Pre*, when the directed arc is an iritubarc) B
describing the model and its implementation. In order to do that, we Poslt: a function,P x T' — N, which defines directed arcs from transitions
S - . N to places
drayv our inspiration from the principle gf weaving. Thveaving is Lett,, be the transition associated with the actian
an important part of aspect programming [14]. The latter uses the In the following, the ruleX = Y means thafX is a logical assertion
weaving to inject aspects in classes of an application, at the meth- sndelhi cﬂorre;go?dlng Petri net.
: : St a € Act, b € State
ods Ievgl, to modify the system execution gfter the compllatloh. An 1) Fa =< (piyp;), tas Pre* (pi, ta), Post(p;, ta) >
aspect is a module representing crosscutting concerns. The interest (2) Oa =< (p;, p;), ta, Pre(pi, ta), Post(pj, ta) >

of aspect programming to integrate the monitoring in an application (3) donea =< (p;,p;),ta, Pre(pi,ta), Post(pj,ta) >

(4) —donea =< p;,pj,ta, Pre*(pi,ta), Post(pj, ta) >

(5) B =< (pi,B;pj),ti,tj, (Pre(pi, ti), Pre(B,t;)),
(Post(B,t;), Post(pj,t)) >

(6) a =< (pi,pj);ta, Pre(pi,ta), Post(pj,ta) >

information of transgression. An instance is destroyed when the net
is in a final state, so when the law is respected or when the delay of
the law observation is elapsed.

When the behavior part sends an information to the control part, it
is stopped until the control part permits its restarting. The temporary
deadlock is essential if we want to prevent the execution of forbidden
actions.

Set of Rules 3
Lett, be the transition associated with the event
Lett, be the transition associated with the event useg.in
Let Pre(p,t) be the function which returns the input place
of a transitiont.
Let Post(p,t) be the function which returns the output place
of a transitiont.
Letmerge, (p1,p2) be the operator of fusion of two places andps.
Va € Act, ¢ € Assert, 3 € State
(1) [a]p = mergep(Post(p,ta), Pre(p,tg)).
(2 ¢1Vo2 = mergep(P'r‘e(p, tqbz)v Pre(p,t¢1))
(3) 91 A @2 = separationintwo Petrinets : PNy, and PNy,
(4) B D ¢ = mergep(Pre(p,ty),)

6 About the multiagent behaviors

In the previous parts, we have presented the whole functioning of
the self-controlled agents. Particularly, we tackle a single agent view,
that is when a law affects only one agent. Even if this first part solves
a set of problems related to individual agent behavior, we think that
shifting to the multiagent behaviors rises other problems. Indeed, the
guestion is the control of the multiagent system behavior when sev-
eral agents, individually correct, are put together. A first step to an-
. . swer this question is the handling of the control when a law is applied
5 Thedetection of transgression to several agents.

We remind that the behavior part sends information about its states Our aim is to distribute as much as possible the control into each
and events to the control part. From this information, the control pargent involved in the law. We would like to avoid a centralized solu-
must verify if the laws associated with the agent are respected. THON. We emphasize three points to put forward in that case:

detect the laws violation, the control part uses the two following al-

gorithms: « How is the distribution of the Petri net done among all the agents

concerned by the law?

« How do the control parts of the agents collaborate to detect a law
transgression?

« How is the regulation done? Who is the culprit?

Algorithm 1 In the main part of the control part

. LetI be an information about the agent behavior.

. Let{t1, ..., tn } be the set of transitions associated with

. Let{Pi,..., P} be the set of Petri nets associated with the agent.

. Let{Pact1, ..., Pactp} be the set of activated Petri nets (i.e. associated
with the laws to be manage)

. Lett;; be the transitioni of the net;.

cforal P, € {P1,..., Pm} with ¢y € {t1,...,tn} dO

Pactp41 < create an instance @t

addPactp1 in {Pacty, ..., Pacty}

. end for

. Let{Pact1, ..., Pact; } be the set of the activated Petri nets including a

tij € {t1, ., tn}, 5 € {1,...,1}

for all Pact; € {Pacty, ..., Pact;} do

BwWNPE

6.1 Thenet distribution

The Petri net representing a law applied to several agents is deduced
as in a single agent context. Then, the net is distributed into the con-
trol parts of the agents concerned by the law. This distribution is done
by following the algorithm 3.

Soo~owu

11: Algorithm 3 Petri net Distribution

12: inform Pact; of the information associated with; 1: LetL be a law.
13: end for 2: Let P be the Petri net representidg
3: Let Nbagent be the number of agents concernedlby
4: Let{Tm1, ..., Tmn } be the set of transitions where the information asso-
- — - - ciated witht,,,; comes from the agemtG,,, m € {1, ..., Nbagent}.
Algorithm 2 Within the |nstanc.e's of Petri net . 5: Let Ppren,: be the input place of the transitiarof th’e aéentAGm.
1: Let{t1,tn} be the set of transitions of the Petri net. 6: Let Ppost,: be the output place of the transitiof the agentAG, .
2: LetI be the sent information. 7. forall T € {Tr1, ..., Tmn} do
3: Lett; be the transition associated with the informatian ¢4, ..., &y, 8: putT in the control part of the agemt G, .
4: A transitiont; is activatedif a token stands in all the previous places of 9: end for
t; (in our Petri net the arcs are one-valuated). 10: if Ppostmt = Ppre(pm41)y then
5: if ¢1 is activatedhen 11: putPpost.,: in the control part of the agemG,,, 1 1)
. (m+1)
6: if t; isfirablethen 12: end if
; elsfli,re the transitiort; 13: if Ppre<m+1)t/. = Ppremt then
o th_row exception iésl mglijftppremt in the control part of the agett G, .
12 engn|(fj if 16: for all ¢’ € {1,...,n},m’ € {1, ..., Nbagent} do
: 17: if Ppostmt # Ppre,, then
18: put Ppostm:¢ in the control part of the aget G, .

The control part receives the information and generates a new i

19
stances of each Petri net beginning by the transition associated w%q;
22:

the information. The monitoring of the laie. the associated Petri
net, isactivated. Then, the control part forwards the information to 23

o

end if
if Ppremt # Ppost,,, then
put Pprem: in the control part of the agemt G, .
end if
: end for

all the instances where the information is expected. If the transition

associated with the information is activated , the instance verifies if Let us note that the control parts are only linked through the arcs
the transition is firable (according to the line 6, algo 2) and changebetween places and transitions (themselves distributed over the con-
the Petri net. When an inconsistency is detected, the instance throwsl parts of agents). These links represent the information flow be-
an exception and the control part warns the behavior part by sendingveen the control parts.é the flow of the token).

« Selfish: The agent always refuses the requested services.

6.2 Thecollaboration
L .)) « Absurd: The agent accepts the services but sends absurd results.
A control part is willing to listen to the behavior part of its agent | siacomer: The agent is always late replying

and to the control part of the other agents. Indeed, when a law is

distributed into several agents, the control parts of these agents are Therefore, Interloc is an interesting testbed to validate our ap-
able to exchange information about the occurrence of events angroach. We have expressed laws to detect wrong behaviors and the
states. We have seen that the net distribution between the contrapplication has been executed with modified agents in order to de-
parts is in such a way that only branchEsansition — Place tect these “undesirable behaviors”, by using the generator provided

or Place — Transition link every pieces of the net. These arcs by SCAAR.

represent the flow of an information between the agents. In order to

explain the collaboration between the control parts, we propose t§ Conclusion

use an example.

So, when a control part_' 4, receives an information from its
agent, if this information is associated with a transitibahose the
next place is in the control part of another agé&ri, thenC 4 sends

We have presented the principles of the autonomous agent control.
Particularly, we have described the mechanisms and the architecture
of the self-controlled agents, agents able to monitor their own behav-

information about the firing of this transition, (actually, it sends theiOrs. This monitoring is done from the specification of the laws that
token) to the control parf’s and waits for an acknowledgment of the agents must respect during their execution. A distributed solution
receipt. During this waiting, the execution of the agent is temporarilyl® control multiagent behaviors has been proposed. An advantage

stopped and the information associated wiithis considered as al-

of our approach is the possibility to define laws at a high level, al-

ways available. The control pafts receives the information, sends lowing its application to several models of agents. Another point is
the acknowledgment to the control paft, and executes the algo- the automatic generation of the agents and the simplification of the
rithm 1, as if the information comes to its associated behavior partdeveloper's work to take the control into account. The framework
WhenC\4 receives the acknowledgment, the transition can be reall?CAAR, allowing the generation of self-controlled agents has been
fired, the information associated with is consumed and the agent introduced. Our future work is essentially to enhance the implemen-

behavior can continue.

6.3 Theregulation

The detection of a law transgression generates an exception in th[el]
control part. This exception generates the transmission of informa-
tion of transgression from the control part to the behavior part of the[2]
agent. In the context of a law applied to several agents, the mecha-
nism remains the same. All the control parts detecting a transgresy
sion, send the exception to the associated behavior part. So, we sup-
pose that the strategies of regulation solve the problem of who is thd4]
culprit. Putting such strategy in place in the agents is not trivial and
will be treated in our future work. (5]

7 Implementation 6]

Our approach is implemented in a framework: SCAAR. This frame-
work provides the means to describe laws, concepts... and to generate
self-controlled agents. A prototype of SCAAR has been implemented
in SICStus Prolog. This first version provides a part of the language,[7]
to describe single agent laws and the generation, from the laws de-
scription, of the Petri nets. The net distribution into several agents isl8]
in progress. The behavior of the control part has been implemented
using the algorithms described in the section 5. The generated self-
controlled agents are made up of two Prolog processes, one execut-
ing the real agent behavior, one executing the control part behavior®]
These two parts communicate by TCP/IP channel for the messag I
passing about the occurrence of events in the agent behavior and the
detection of laws transgression.

Our approach has been applied to a multiagent application of mdi1]
bile naval targets localization, developed in our servingerloc. In 12]
Interloc, planes seek to detect boats, in a passive way. The systém
is implemented in Prolog. In order to demonstrate the robustness of
MAS application, Interloc provides a set of wrong agent behaviors[13]
like:

« Dumb: The agent sends no message. [14]
« Deaf: The agent reads no message.

tation and treat more carefully the regulation part.

REFERENCES

K.S. Barber and C.E. Martin, ‘Agent autonomy : Specifioati mea-
surement and dynamic adjustment’,Rmoc. of the Autonomy Control
Software workshop at Autonomous Agentsig® 8-15, (May 1999).
C. Chopinaud, A. El Fallah Seghrouchni, and P. TaillibeDy-
namic self-control of autonomous agents’Post-Proceedings of PRO-
MAS’05, LNAI 3862, Spinger Verla@?006).

E.M. Clarke, O. Grumberg, and D.A. Peleflodel Checking MIT
Press, 2000.

M. de Sousa Dias and D.J. Richardson, ‘Issues on softmaretoring’,
Technical report, Department of Information and Computer I®ee
University of California, (July 2002).

M. Diaz, G. Juanole, and J-P. Courtiat, ‘Observer-a emdor for-
mal on-line validation of distributed systemHZEE Trans. Softw. Eng.
20(12), 900-913, (1994).

Staffan Hagg, ‘A sentinel approach to fault handling inlthagent
systems’, inRevised Papers from the Second Australian Workshop on
Distributed Artificial Intelligence: Multi-Agent Systemilethodolo-
gies and Applicationsvolume 1286 ofLNCS pp. 181-195. Spinger-
Verlag, (1996).

Mark Klein and Chrysanthos Dellarocas, ‘Exception Harglin agent
systems’, inn proceedings of Agents’99p. 62—68, (1999).

D. Mahrenholz, O. Spinczyk, and W. Séter-Preikschat, ‘Program in-
strumentation for debugging and monitoring with AspectC+#3Rroc.
of the 5th IEEE International symposium on Object-Orienkehl-
time Distributed ComputingWashington DC, USA, (April 29 — May
12002).

M. Mansouri-SamaniMonitoring of Distributed Sytem#&h.D. disser-
tation, University of London, London, UK, 1995.

JJCH. Meyer, ‘A different approach to deontic logic:odéic logic
viewed as a variant of dynamic logidyotre dame journal of formal
logic, 29(1), 109-136, (Winter 1988).

T. Murata, ‘Petri nets: Properties, analysis and agions’,In Proc.
of IEEE, 77(4), 541-580, (April 1989).

Rodrigo Paes, gustavo Carvalho, carlos Lucena, Palgocar, Hyggo
Almeida, and Viviane Silva, ‘Specifying laws in open multieag sys-
tems’, INANIREM Utrecht, (July 2005).

J. Vazquez-Salceda, H. Aldewerld, and F. Dignum, ‘Implementing
norms in multiagent systems’, iRroceedings of MATES'Q4rfurt,
Germany, (September, 29-30 2004).

Dean Wampler. The future of aspect oriented programmif®32
White Paper, available dnttp://www.aspectprogramming.com

