
Automatic Generation of Self-controlled Autonomous Agents

Caroline Chopinaud
Thales Airborne Systems & LIP6

2 avenue Gay Lussac 78851 Elancourt, France
caroline.chopinaud@fr.thalesgroup.com

Amal El Fallah Seghrouchni
LIP6

8 rue du Capitaine Scott 75015 Paris, France
amal.elfallah@lip6.fr

Patrick Taillibert
Thales Airborne Systems

patrick.taillibert@fr.thalesgroup.com

Abstract

Being able to trust in a system behavior is of prime im-
portance, particularly within the context of critical appli-
cations as embedded or real-time systems. We want to en-
sure that a multiagent system has a behavior corresponding
to what its developers expect. The use of static techniques to
validate a system does not guarantee it against the occur-
rence of errors in certain configurations. So, we propose an
additional approach of dynamic self-monitoring and self-
regulation in order that an agent might control, in real con-
dition, its own behavior. This paper presents our approach
of agent control and the generation of self-controlled agents
using the observer technique in order to verify that their be-
havior respect a set of laws throughout their execution.

1. Introduction

Autonomy is an essential feature of cognitive agents. We
will consider the autonomy as the ability of an agent to take
its decisions without the help of another entity [1]. From
the developer’s point of view, it means that the implemen-
tation of an agent requires to take into account that the be-
havior of other agents cannot be predicted with certainty.
This perspective brings up the problem of the confidence
that we can have in a system execution. When critical ap-
plications are concerned, the use of such system might raise
objections because of this unpredictability. So, it is essen-
tial to ensure that a multiagent system (MAS) and its agents
respect some behavioral requirements, which are important
for the application progress.

The aim of our research is to ensure that a MAS behav-
ior will fulfill these requirements. A first approach should
be to use classical methods, such as tests, Model Check-
ing [2] and automatic demonstration to validate a multia-

gent system. But, these techniques are not often in the posi-
tion to detect all possible errors and neither necessarily suit-
able for the validation of MAS as a whole. Even if these ap-
proaches are useful at some levels of MAS design, they let
situations in which errors may occur at runtime. The Model
Checking, working in a system abstraction, can only de-
tect errors in this model; the automatic detection is com-
plex and heavy; testing is by nature incomplete. Hence, to
detect remaining errors, it is interesting to make an on-line
verification of the system behavior. This verification1 con-
sists in monitoring and regulating inconsistent behavior to
prevent a potential system failure. Moreover, we think that
the agents are suitable for making the control of their be-
havior. So, we provide the agents with the means to moni-
tor their behavior and thanks to their capabilities of reason-
ing, they can regulate their behavior in order to be in a right
state once again. The control of the agents behavior will be
made by the agents themselves.

Although it is possible for a developer to insert the con-
trol code into the agents, for monitoring and error detection,
it can become complex: a manual instrumentation of a sys-
tem program, to insert probes, is hard, time-consuming and
prone to error [13]. When several agents are concerned, it
is worst. So, upgrading the agents behavior and control be-
comes hard, if we consider that the monitoring code is frag-
mented in the agent program and also distributed among the
agents. On the basis of automatic instrumentation for mon-
itoring distributed systems, a possible solution could be to
automatically modify the agent program in order to intro-
duce the control and so, facilitate the work of the devel-
oper. We are particularly interested in monitoring software
which consists in inserting software probes into the program
to detect events [3]. The automation of the insertion can take
two forms: (1) developer uses a metalanguage [11] or a li-

1 We will use the term of “control” to refer to this verification



brary of routines [8] allowing to insert probes in a transpar-
ent way, (2) the insertion will be made by compiler from the
specification of the interesting events [10]. We focus on this
last form and we propose a generator which creates agents
being able to control themselves, from a description of re-
quirements associated with the agents and their behavior
program. In section 2 we will present our approach of agent
control. In section 3, we will describe each stage of con-
trol application: the system description, the laws descrip-
tion and the automatic generation of self-controlled agents.

2. Control of autonomous agent

2.1. Behavior verification

Making a model of a whole MAS and its agents is not
conceivable because of its complexity (indeterminism, state
explosion, distributed nature). So we propose to use norms
to express properties about agents behavior. In general,
norms [14] define constraints on agent behavior in order to
guarantee a social order. An agent decide to respect or not a
norm by restricting its set of possible actions. We uselaws
to describe desired or dreaded behaviors or situations. Laws
are norms that don’t be taken into account by the agents dur-
ing the decision process (i.e. agents can act as they want and
our approach consists in verifying afterwards if the chosen
action respects the laws) because we want to distinguish the
agent implementation and the laws/control description (see
section 2.2). The laws represents significant or critical re-
quirements defined for the system. So agent capable of self-
control checks that laws are respected throughout its execu-
tion. But monitoring is not enough, when an agent detects
the transgression of a law, it must regulate its behavior form
repairing information.

In order that the agents can deduce their behavior when
they are informed of a law transgression, we suppose that
the laws are known by the agents. Either the developer con-
structs the agents from requirements, consequently he ver-
ifies that the agents respect the laws, or the agents, have
a representation of this laws that they attempt to respect.
So, our approach consists in adding a dynamic verification
to make sure that the developer correctly implements the
agents and the latter always respect the laws once executed
in MAS context.

2.2. Level of laws description

We wish that the person who defines the laws doesn’t
be necesseraly the developper. In general customers define
requirements and developpers implement the system from
these requirements. Also, the customer should be able to
know what is important to verify whithout knowing the
agents implementation. So, we suppose that laws are ex-

pressed in natural language by the customer and translated
by an expert in a description language allowing the deduc-
tion of the appropriate control. Therefore, it is necessaryto
express the laws at a level of abstraction understandable by
the customer and allowing an easy translation. Moreover,
for a sake of generality, we would provide a control mech-
anism for several agent models. The level of laws descrip-
tion must permit to include several kinds of agent model.
So the laws must state generalconcepts, representing agent
models and the application. The model designer provides
a set of concepts representing the model specificities and
the system designer/developper provides application typi-
cal concepts. From this concepts the expert can describe
the laws expressed by the customer by using the descrip-
tion language.

2.3. Control Enforcement

The control enforcement is ensured through five steps :

1. The model designer provides a description of concepts
and their links with the model implementation.

2. The customer provide the set of laws.

3. The system developer implements the agents from a set
of requirements or/and the agents use the requirements
to deduce their behavior at runtime. He provides the
agents regulation behavior associated with each law.
He describes the concepts representing the application.

4. An expert translates the laws (2) by using a description
language. The laws state concepts described in (1) and
(3).

5. The automatic generation of self-controlled agents
from the laws description (4), the concepts used in
laws and their representation into the model imple-
mentation (1) and the code of the agent behavior
(3).

3. Generation of self-controlled agents

3.1. System description

We saw that the laws are based on high level concepts
allowing the description of agents and system specifici-
ties. So, we construct a basic ontology that the model and
system designers will use to describe the model and the
agents. A set of agent concepts is provided by D.N. Lam
and K.S. Barber [9] for agent verification:Goal, Belief, In-
tention, Action, Event, Message. We take a part of this con-
cepts (Goal, Action, Message) and we add other ones which
are more typical of agent models from our point of view
(BDI [5], CLAIM [6], personal agent models):Agent, Ob-
ject, Knowledge, Plan, Agent Creation, Message Sending,



Message Receipt, Migration. Each concept has a set of at-
tributes and methods allowing to express some tests on the
concepts used in laws. The ontology can be extended to de-
scribe more precisely the models and the application by sub-
concepts or instances. The concepts are distributed in three
categories :Agent, State(agent internal characteristics) and
Action.

The laws stating abstract concepts, it is necessary to
know their specification into the agent program to check
if the laws are respected. The model designer describes the
links between the concepts and the model implementation.
This description can be validated to ensure that the laws will
be taken into account.

3.2. Laws description

We can distinguish two kinds of law:(1) one represent-
ing unwanted state or behavior of an agent. It allows the de-
tection of situations where an event which must never oc-
curs, happens.(2) one representing expected state or behav-
ior of an agent. It allows the detection of situations where an
expected event does not occur. To represent this two kinds
of law we use the deontic operators of prohibition and obli-
gation. We propose a language allowing the expression of
prohibition, obligation, time notion or order between events.
An event can be a change in state or the execution of an ac-
tion by an agent (we retrieve our three concepts categories).
The semantic of our language is the standard deontic logic
[15]. We divide a law in three parts :

INVOLVED AGENTS (IA) : the statement of agents in-
volved by the law. Those are agents that can be subject to
the law and agents used to describe the law application con-
text.

DEONTIC ASSERTION (DA): describes what is obliga-
tory and what is forbidden. It is a set of association between
an agent and an event. An association can have conditions.

APPLICATION CONDITIONS (APC) : describes condi-
tions about law context. It is an expression describing when
the DA must be respected relatively to a set of events or
time.

3.3. The automatic generation

We propose to generate, from the description of the sys-
tem and the laws and the behavior programs, agents being
able to monitor and regulate their own behavior. We pro-
vide the agents an introspective architecture allowing self-
control by adding the next components in the agent pro-
gram:(1) some control points allowing the detection of par-
ticular events about the behavior or the state of the agent
during its execution;(2) a control part which receives in-
formation about the detection made by the control points,

analyzes the agent behavior and verifies that it respects the
laws. To insert the control points into the agent we propose
to use theweavingand to monitor and check the respect of
laws we propose to use theobserverapproach.

Weaving is an important part of aspect programming.
The latter consists in modularizing crosscutting structure.
The aspect programming uses the weaving to inject aspects
in classes of an application, at methods level, to modify the
classes execution after compilation. An aspect is a mod-
ule representing crosscutting concerns [16]. The aspect pro-
gramming, with the use of AspectC++, is shown as partic-
ularly interesting to integrate monitoring in an application
[12]. We take this idea of weaving to make the automatic
instrumentation of control points in the agent behavior pro-
gram.

Observer [4] is an approach which consists in having a
program and its model running in parallel and comparing
them during the execution. The model is linked to the pro-
gram by control points. Properties about the program exe-
cution are modeled, for instance, by Petri net, with transi-
tions linked to the program by control points. When the pro-
gram arrives on this control points, a controller make sure
that the tokens at the right places at the right time and get-
ting them evolve consequently. We use the observer concept
to check the laws. So, each law is represented by a Petri net
with transitions linked to the control points in the agent pro-
gram. The control part verifies that the agent behavior cor-
responds actually to the model of the associated laws. When
a transition is activated at a bad instant, an exception asso-
ciated with the involved transition is thrown and analyzed
by the treatment block of the control part to execute the re-
pairing actions.

The generation of the Petri net representing the law and
the deduction of control points is divided in two stages:(1)
from the law, by using the language semantic and the de-
ontic logic axiomatic, a deontic expression is deduced;(2)
from this expression, a set of Petri nets is generated and the
final Petri net representing the law is obtained by the merg-
ing of all the nets. The deontic expression put the events to
observe forward and its structure allows the deduction of
the final Petri net.

A Petri net representing a law is not activated over the
whole execution. In fact, while the first transition is not ac-
tivated the events coming from the control points in the be-
havior part are not treated because the prohibition and the
obligation have an interest only under certain conditions.
So, the law is deactivated when the net is in a deactivation
state. If a law was activated all the time, off-context excep-
tion would necessarily occur, even if the behavior is cor-
rect. A solution should have been to deduce a more com-
plete Petri net including transition and state to not generate
off-context exceptions, but this deduction becomes quickly
complex from laws that we want to be simple.



4. Related Works

M.S. Featherand al.[7] treat also the agreement between
a system and its requirements. In their approach, an external
monitor collects the events sent by the agents and a recon-
ciler is going, when a requirement violation is detected, not
to hand the system in a state that respected requirements,
but to modify requirements so that they are in agreement
with the new behavior. The authors do not consider essen-
tial requirements for the system execution, they do not seek
to prevent inconsistent behavior. They try to make a sys-
tem and his requirements adapt themselves to stay in agree-
ment during the system execution.

D.N. Lam and K.S. Barber [9] propose a methodology,
the Tracing Method, to test and explain the agents behav-
ior. The aim of this method is to ensure that an agent per-
forms actions for the right reasons, and if an unexpected ac-
tion occurred, to help explain why an agent decided to per-
form the action. We have in common an agent ontology to
compare specifications (state-chart diagrams, communica-
tion protocol diagrams) and agents real behavior. But in our
approach we propose an automation of the code instrumen-
tation and the detection of inconsistencies between the ex-
pected and observed behavior. Finally, our control is em-
bedded into agents to allows an on-line detection of errors.
The Tracing Method allows an off-line analysis of the pro-
gram traces generated during the system execution.

5. Conclusion

We have presented our approach of autonomous agent
control, particularly mechanisms to generate automatically
agents being able to check their own behavior. We use laws,
describing ideal behavior or situation, that the agents must
respect throughout their execution. The interest of our ap-
proach is to permit the description of laws by someone not
involved in the MAS development. Another important point
lies in the fact that the control can be applied to agents im-
plemented with different kinds of agent model, in condition
that the model used can be described from our agent con-
cepts. With our framework, we provide a language to de-
scribe laws. We propose a mechanism for automatic gen-
eration of Petri nets representing the laws and insertion of
control points to detect expected events. The Petri nets are
used to monitor the agent behavior and detect when laws are
transgressed, by using observers embedded into the agents.
The next step of our works will concern the application of
laws at multiagent level and the implementation of this ap-
proach into a framework : SCAAR.

References

[1] K. Barber and C. Martin. Agent autonomy : Specification,
measurement and dynamic adjustment. InProc. of the Auton-
omy Control Software workshop at Autonomous Agents’99,
pages 8–15, May 1999.

[2] E. Clarke, O. Grumberg, and D. Peled.Model Checking.
MIT Press, 2000.

[3] M. de Sousa Dias and D. Richardson. Issues on software
monitoring. Technical report, Department of Information
and Computer Science, University of California, July 2002.

[4] M. Diaz, G. Juanole, and J.-P. Courtiat. Observer-a concept
for formal on-line validation of distributed systems.IEEE
Trans. Softw. Eng., 20(12):900–913, 1994.

[5] M. dInverno, D. Kinny, M. Luck, and M. Wooldridge. A for-
mal specification of dmars. Technical note 72, Australian Ar-
tificial Intelligence Institute, Carlton, Victoria, 1997.

[6] A. El Fallah Seghrouchni and A. Suna. Claim: A com-
putational language for autonomous, intelligent and mobile
agents.LNAI, 3067:90–110, 2004.

[7] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard.
Reconciling System Requirements and Runtime Behavior. In
Proceedings of IWSSD9, Isobe, Japan, 1998.

[8] Y. Huang and C. Kintala. Software fault tolerance in the ap-
plication layer. InSoftware Fault Tolerance, 1995.

[9] D. Lam and K. Barber. Debugging agent behavior in an im-
plemented agent system. InProceedings of PROMAS’04,
pages 45–56, New York City, July 20 2004.

[10] Y. Liao and D. Cohen. A specificational approach to high
level program monitoring and measuring.IEEE Trans. Soft-
ware Engineering, 18(11), November 1992.

[11] J. Lumpp, T. Casavant, H. Siegle, and D. Marinescu. Spec-
ification and identification of events for debugging and per-
formance monitoring of distributed multiprocessor systems.
In Proceedings of the 10th International Conference on Dis-
tributed Systems, pages 476–483, June 1990.

[12] D. Mahrenholz, O. Spinczyk, and W. Schröder-Preikschat.
Program instrumentation for debugging and monitoring with
AspectC++. InProc. of the 5th IEEE International sympo-
sium on Object-Oriented Real-time Distributed Computing,
Washington DC, USA, April 29 – May 1 2002.

[13] M. Mansouri-Samani. Monitoring of Distributed Sytems.
PhD thesis, University of London, London, UK, 1995.

[14] J. Vázquez-Salceda, H. Aldewerld, and F. Dignum. Imple-
menting norms in multiagent systems. InProceedings of
MATES’04, Erfurt, Germany, September, 29–30 2004.

[15] G. von Wright. Deontic logic.Mind, 60(237):1–15, 1951.
[16] D. Wampler. The future of aspect oriented pro-

gramming, 2003. White Paper, available on
http://www.aspectprogramming.com.


